
[Adsul, 2(6): June, 2013] ISSN: 2277-9655

http: // www.ijesrt.com (C) International Journal of Engineering Sciences & Research Technology
[1405-1421]

IJESRT
INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH

TECHNOLOGY
Development and Testing of Electronic Architecture for Networked ECUs Using

Diagnosis Fault System
Rahul B. Adsul*1, Deepali A. Dekate2

*1AM, CIS Technologies (India) Pvt. Ltd., Pune, Maharashtra, India
2PVPIT, Department of Electronics & Telecommunication, University of Pune, Maharashtra, India

rahulbadsul@gmail.com
Abstract

The progressive increase in number of components and electronic system demands the overall architecture
to be developed in different scenario .In order to achieve optimum electronic systems, it is necessary to build many
real devices and evaluate the performance of systems. However, it is also becoming necessary to build virtual
devices because of the increasingly complicated and large-scale systems. So the physical level, connecting between
functional level and implementation level, should also be applied to virtual development. On the other hand, not
only the functions, but also the safety designs need virtual technology to apply fault injection.

With increasingly sophisticated ECU development technologies, static simulators can no longer work with
requisite testing requirements, so dynamic simulators are preferred. This progression with dynamic simulator will
discusses the overall architecture of the system and the design decisions are made to reduce system cost.

This paper also discusses a concept and a powerful tool, which allows a wide range of automatic tests to be
performed on networked ECUs. More precisely, it represents a complex system for connecting and testing all the
networked ECUs in a modern vehicle.

Basically, testing is a vital and on-going part of the product development process, especially in the
development of automotive systems. Validation testing of vehicle electrical systems and their computation is
difficult and thus, expanding with the growth of certain features. Thus, a key to reduce test costs in increasingly
complex systems is to work with the ability of the requisite distribution process in order to make every testable
component in simpler manner.

Keywords: Electronic Architecture, ECU Development, ECU Modeling, Networked ECUs, ECU Testing.

Introduction

As part of the push towards a lower-carbon
society, electronic control systems for automobiles
are developing and evolving from domain-specific
control in the vehicle (power train, body, safety, etc.)
to the integrated control of the entire vehicle. The
ECU, which forms the backbone of such control
systems are thus growing in scale and complexity.
The development of ECUs in this changing
environment requires having an overview of the
entire electronic system at the planning stages; this
overview would set out an optimized ECU structure
in which even the structure of the chipsets are
defined; without such an overview, it will be difficult
to keep up with vehicle requirements and
specifications.

As well, the more stringent design
requirements for safety that straddle multiple systems
are becoming difficult to achieve using the

conventional single-system, single-ECU development
approach.

Figure 1: Process of ECU Development

[Adsul, 2(6): June, 2013] ISSN: 2277-9655

http: // www.ijesrt.com (C) International Journal of Engineering Sciences & Research Technology
[1405-1421]

Overview of Electronic System Development
Based on the requirements from the vehicle

product plan, an automotive electronic system obtains
vehicle information (values from various sensors)
directly or through a vehicle LAN, analyzes it, and
then cooperates with other systems or gives feedback
to a particular actuator.

 Figure 2: Configuration of Software and Hardware
Units

Currently, to make the structure of the entire

vehicle easier to understand, a block diagram
simulators and other highly abstract theoretical
models are used to develop architecture and to decide
requirements for electronic systems.

When functions are being allocated among
the various ECUs, the software and hardware
structure of the ECUs is not considered.
In the following stage, the ECU development phase,
the software and hardware allocation aspects of
establishing system requirements is a major decision-
making step. In this stage, the performance of the
electronic system is mostly decided, and is followed
by the concrete implementation design.

At the detailed design stage, the various
constraints interact in complex ways. It is constraints
in the system specifications and the constraints in the
implementation. For example, a constraint in the
system is to end processing within 1ms, a constraint
in the implementation is to use a microcomputer.

Figure 3: Linking Different Abstraction Levels.

If these are not balanced for cost, it is

necessary to continue improving both specifications
until it is balanced. This is because as the
development process moves downstream, the amount
of information required increases; however large
amounts of information becomes apparent for the
first time downstream.

In order to keep such coordination to the
minimum, it is necessary to determine as much
information at the upstream stages and to create a
large-scale, detailed verification environment.

Aims of Virtual Development

Conventionally, optimizing systems and
creating their architecture required fabricating large
numbers of prototypes and evaluating them, but with
their increasing scale, this method of optimization
has become impractical. We therefore believe virtual
manufacturing is a required step. As a function level
simulator, a block diagram simulator is used, and as
an implementation level simulator, SPICE is used
today, these are both separate and independent
development environments for the theoretical and
implementation domains. Because of this, we will be
working to introduce virtual development as a new
physical level development environment to connect
these domains.

In terms of not only function but also design
safety, one of the elements that are required of virtual
development is the ability to inject failures that are
difficult to recreate in an actual machine. Thus it was
decided to use modeling technology based on System
C, a language that can be used to rapidly run system
level simulations while having the notion of time, in
order to create the virtual development environment.

[Adsul, 2(6): June, 2013] ISSN: 2277-9655

http: // www.ijesrt.com (C) International Journal of Engineering Sciences & Research Technology
[1405-1421]

This ECU modeling technology is described in more
detail below.

Definitions of the Vehicle Electronic
Architecture

We considered in the electronic architecture
a specific module to control the functions of the
engine, which is responsible for capturing the electric
signals of the sensors management, and also, the
ideal amount of fuel to be injected on the exact
moment, through the time of opening and closing of
the injection valves.

Another module is responsible for receiving
the electronic signals of the foot pedal accelerator
and also of other providing functions of the cabin,
such as commands concerning engine brake, power
take off, management of the sent or received
information from the instrument cluster, and other
ones.

Besides, these modules can also interact
with other existent ECU's in the electronic
architecture responsible to manage specific functions
of the vehicle, such as: brakes, maintenance, gearbox
and retarders, doors control, Immobilizer among
others.

The following figures show two basic
electronic architectures for commercial vehicles. The
first of them displays a concept where the lines for
diagnosis of faults and set of the parameters are made
in an independent way, it means: each ECU possesses
its own diagnosis line.

Figure 4: General ECU Architecture

In this kind of electronic architecture the

Off-Board diagnosis equipment is responsible to
address the messages for the ECU's through
Instrument cluster diagnosis line. Therefore, the
instrument cluster works like a "gateway for the

diagnosis” receiving the information from Off-Board
equipment and sending to the CAN BUS the
communication data among the electronic modules.

Definitions of the Diagnosis Concepts

Currently, according to the country that the
vehicle will be sold it is possible to use the SAE
standard or ISO standard. Add to the protocols, are
considered also the concepts to attend the
maintenance of the vehicles in after sales. This is a
very important point that should be analyzed because
the conception of the electronic architecture happens
before the procedures used to elaborate the diagnosis
software that will be used in the workshops.
In this phase of the vehicle development is defined all
the components and systems concerning to the On-
Board and Off-Board diagnosis. Two topics will be
examined:
On-Board Diagnosis – Nowadays, using the
technological resources, a lot of applications for On-
Board diagnosis can be improved in the commercial
vehicles, considering the information showed to the
driver are important for maintenance or detailed
information about the vehicle functioning.

This screen can show all information that
can turn better the vehicle conduction. A flexible
service system can inform to the driver, through a
display like this, the periods and kilometers values to
change the normal wearing components of the truck,
like: oil of the engine, oil of the gearbox and axles,
brake components, filters, etc, depending of the
conditions vehicle using.
Off-Board diagnosis – It is essential to make a very
clear selection between the information that must be
showed through of the On-Board and Off-Board
Diagnosis. At the On-Board system, the fundamental
objective is the possibility to the driver to see the
necessary information to perform the best way to
drive the vehicle and to discover the faults that is
happening with the electronic system and power
train.

In the Off-Board diagnosis system should be
programmed all the necessary functions to do some
changes in the ECU's and necessary information to
perform a preventive and corrective maintenance of
the vehicle in the workshop. Therefore, many
diagnosis information require more technical
knowledge.

The development, build, validation and
release of software now require a strategy that must
include global 24-hour coordination and test
capability. More software has to be built, tested then
released and customers have even greater
expectations of quality than ever before.

[Adsul, 2(6): June, 2013] ISSN: 2277-9655

http: // www.ijesrt.com (C) International Journal of Engineering Sciences & Research Technology
[1405-1421]

Having tools that fit into this new high efficiency
environment that are globally accessible and quickly
configurable for different applications are essential
for success. New requirements have emerged,
including test repeatability, inter-related dynamic
signals, higher number of I/O signals in new ECU
designs, and the ability to configure a single
simulator for multiple ECU programs.

This being the case, it is necessary to define
an economical simulator solution that provided all of
the features of the current static simulator including
I/O and ease of use. This solution however would
provide the advanced features that are now needed to
develop and test ECU software in a corporation with
distributed global engineering sites.

To get the most value from the simulator it
needed to be on the bench and easy to use by a wide
variety of users. The simulators design must be
robust with high Mean Time Before Failure (MTBF)
numbers and also must take into account normal use
errors such as I/O wiring mistakes so all I/O need to
be able to handle short to battery and short to ground
conditions. Suitable diagnostic software also needs to
be running in the simulator to alert the user to any
issues that may exist in the system in order to avoid
ECU testing errors. Careful attention must be taken to
the design of the simulator’s user interfaces, as
technicians, hardware, systems and software
engineers will all use the development bench
simulator. Software testing requires the use of
programming languages to create scripts and
interfaces to other devices through Application
Programming Interfaces (API’s) especially when
white box testing. This however should not be the
only interface, as that would discourage other users
from interacting with the tool. A Graphical User
Interface (GUI) is therefore also required to make the
system easy to use by the other engineering
competencies.

The simulator, which uses a PC-based
architecture to minimize costs, has specific I/O cards
that can be easily reconfigured via software.
Additionally, all simulator I/O cards were developed
with a common FPGA communications core to
reduce costs. This simulator also supports a wide
array of commercially available PCI I/O cards for
applications such as CAN, GPIB, IEEE1394, and
other I/O needs.

For many years, the development of new
vehicles has been characterized by the ever
increasing use of electronic control units (ECUs). As
legislation on environmental protection is repeatedly
stiffened, e.g., CARB’s OBD II standard, EOBD in
Europe, mandatory reduction of fuel consumption,
more and more complex engine controllers are
required. Automatic gearboxes with new

transmission concepts are also being increasingly
used in medium-sized and compact cars. Electronic
systems from the field of vehicle dynamics (ABS,
ESP, ASR) are very often standard equipment in
modern cars.

Figure 5: Real-Time Simulation.

Even for car body and convenience, ECUs

have become indispensable. Thus many functions,
e.g., seat movement, side view mirror movement,
interior/exterior illumination, parking assistant and
dashboard, are realized by means of ECUs.
Implementing these complex functions is feasible
only if the control units are interconnected via busses.
This data bus networking of ECUs in the vehicle
enables the sensor system, computed data, and the
actuator system to be used jointly by a variety of
functions. Typically, modern vehicle concepts consist
of two or three different CAN networks. Particular
ECUs, connected to more than one network, serve as
gateways between the networks in these
configurations.

The ECUs have CAN controllers (nodes)
and are distributed on two CAN networks. The low-
speed CAN network, the B-CAN, is connected to all
body and comfort ECUs. The powertrain and vehicle
dynamics ECUs are connected to the high-speed C-
CAN bus. The body computer forms the gateway
between the two CAN networks.

ECU manufacturers eliminate many errors
during the project and development phases of the
single ECUs. One of the standard tools, which have
been widely used for years, is hardware-in-the-loop

[Adsul, 2(6): June, 2013] ISSN: 2277-9655

http: // www.ijesrt.com (C) International Journal of Engineering Sciences & Research Technology
[1405-1421]

technology. This particularly applies to all powertrain
and vehicle dynamics ECUs. However, there are
many other errors which cannot be detected without
performing tests at integration and system level. This
means that the complete system of networked ECUs
must be tested.

Importance of Testing

Basically, the development of any product
will require the verification of conformity to
specifications and robustness in design. Testing
allows the design engineer, test engineer or test
technician to confirm that an ECU and/or system
performs as intended. More specifically, it provides
conformation that it can execute the functionality it
was created to provide, and that it will successfully
accomplish its task over its entire lifetime and
through all conditions for which it was designed.
Now, the manufacture of a high-volume product
demands uniformity in order to ensure first-run
quality over the entire production run, from start to
finish. Generating first-run quality of a production
line eliminates the costly inefficiencies arising from
reworking products that are not quite correct as they
come off the line, and scrapping products that can not
be reworked economically. Testing is included within
the manufacturing process for use in establishing and
maintaining uniformity control in production.
All development and production strategies basically,
rely on testing for the feedback required to develop,
produce and refine their products. Efficient
development methodologies match testing scope and
depth with the desired complexity and required
robustness of the product in order to test the product
optimally yet complete the test regime in a timely
fashion. This process will maximize the test
efficiency while minimizing the cost of the resources
required.

Also, efficient production strategies seek to
employ as little testing as possible, for efficiency, in
order to support the uniformity that is their target.
Historically, the most effective of these rely on
statistical process control (SPC) as the means for
managing uniformity in production. It is
methodologies that detect the scope and depth of
testing to be used.

Traditional Test Scenarios

Validating ECUs - The process of validating
automotive ECUs generally involves exercising their
functional capabilities while attempting to place them
under controlled conditions that accurately represent
those they will encounter in the target production
vehicle. In this way the device under test can be
scrutinized scientifically in its ‘natural’ environment.

For complex inputs and outputs like Exhaust Gas
Oxygen (EGO) sensor inputs and fuel injector
drivers, elaborate simulations of the corresponding
production components are often used. However, to
save money, test engineers have frequently attempted
to use actual production components instead
wherever possible. Invariably this sort of
simplification results in a test that does not mimic the
real world well, if for only one reason: it can not
accurately represent the spectrum of variability
encountered over the entire production run covering
every part of the same design.

Take the case of the very simplest of I/O, the
digital input. Responding to the state of a signal that
has only two possible values, set at perhaps +12V
and Ground, it would appear that the application of
these discrete voltages by any power supply would be
sufficient to represent the equivalent signals
generated for the ECUs use by something elsewhere
in the vehicle. However, an old axiom has it that
every digital problem reduces to an analog one when
problems begin to appear in the vehicle. In other
words, even simple digital inputs have analog aspects
that must be considered and accounted for.
Expanding this case to each input or output on each
ECU in the vehicle highlights the degree to which
test systems must be designed in order to avoid
missing a failure. The only certain method for
minimizing the needs for this level of detail is the
reduction of I/O counts themselves.

 Validating systems -Historically ECU
validation and systems validation have been treated
as one and the same in the automotive world. This is
because each new system added to a vehicle has
usually been built upon a single, and intimately
related, ECU at its heart. Engineers have found that
each new feature proposed is most easily developed
as a separate ‘overlay’ to the existing vehicle
electrical design. Thus each is generally assigned a
new ECU and added incrementally to the existing
array of electronic features already fitted to its
vehicle. This concept has worked well until recently
because these new and independent systems have
been developed, refined and put into production as
self-contained, standalone solutions having a
minimum of interaction with the remainder of the
vehicle’s systems. Quite some time ago a more
formal adoption of the concept of systems began to
be emphasized, focused primarily at ensuring
thorough consideration of the effects of the external
components making up each system, as well as
interaction with the other systems in the vehicle, in
addition to the ECU itself. Prior the time detailed
study and characterization of these external
components and effects was frequently forgotten or
unconsciously minimized by ECU-focused engineers.

[Adsul, 2(6): June, 2013] ISSN: 2277-9655

http: // www.ijesrt.com (C) International Journal of Engineering Sciences & Research Technology
[1405-1421]

These oversights have frequently led to unfortunate
results, primarily because no ECU operates in a
vacuum in the increasingly complex vehicles that are
being designed and built.

More recently, the systems approach has
returned to prominence because a migration away
from traditional discrete wiring is occurring. The
migration first introduced, and then facilitated the
expansion of, computer style networking in vehicles.
This type of networking, originally called multiplex
wiring, was first introduced as a means of reducing
I/O, more specifically those inputs and outputs used
as interconnects between ECUs. In practice it has
resulted in a corresponding reduction in wiring cost,
and so its use has been expanded dramatically over
the last several years. Successful implementation of
in-vehicle networking requires a systems focus
because it raises the level of interdependency
between ECUs on the vehicle.
As a result of the emergence and recent
reinvigoration of the systems focus, and the clear
need to test ECUs as part of the system to which they
belong, more often than not, the validation of an ECU
must go hand in hand with the validation of the
system in which it resides.

Test Strategies

Of all design, development and
manufacturing tasks, testing is perhaps most critical
because of its ability to confirm the successful
transfer of theory into practice. For this reason it is
conducted periodically throughout the process of
designing, releasing and manufacturing a vehicle
from start to finish. During the early part of the
design effort testing usually involves the simple
confirmation that desired outcomes result when
designs are run through their operating regimes.
These early tests are very frequently ad hoc,
informal, and not usually conducted according to a
detailed time line.

The first formal testing event in most
development programs occurs when the entire design
is completed. At this point design verification (DV)
tests are created and conducted to a detailed formal
plan established prior to beginning the development
process

.
Figure 6: Vehicle Simulation Test Environment

The second formal testing event occurs with

the startup of production. Process validation tests
confirm the ability of the manufacturing process to
meet its target production goals. This is essential to
the establishment of a controlled production
environment. Since many aspects of the design of
ECUs and electrical/electronic components have an
effect on manufacturability, this test set also provides
feedback on the design process.

The process validation test suite is also
important for the maintenance of the controlled
production process after startup. In today’s
quality/cost-conscious environment, some production
processes employ statistical process control as the
means for managing the production process, and
ensuring controlled production, in a cost-conscious
fashion. The initial process validation suite is used to
validate every ECU prior to and concurrent with
startup. Afterward statistical process control allows
it, or the relevant portions of it, to be applied to
samples drawn at random from the production stream
according to a pre-established plan, rather than
testing every part. This reduces test expenses
significantly, while simultaneously ensuring
optimized quality.

Another formal testing event is known by
the generic term ‘End-of-Line’ (EOL). End-of-Line
tests are usually part of a 100% inspection program.
By definition 100% inspection is at odds with the
premise within statistical process control that only
random samples of production output need to be
tested to verify conformance to specification in a
well-controlled production process. Thus, the
existence of EOL testing is an admission that SPC is
very difficult or even impossible to successfully carry
out with some products.

[Adsul, 2(6): June, 2013] ISSN: 2277-9655

http: // www.ijesrt.com (C) International Journal of Engineering Sciences & Research Technology
[1405-1421]

Of the thousands of parts that make up a typical
vehicle, experience has proven that ECUs exhibit this
characteristic most often. As a result of the receipt of
too many bad ECUs, i.e. those that made it past their
respective production screening systems without
being detected, OEMs frequently mandate EOL
testing for most of the electronic components they
buy. It is particularly true for complex ECUs that
their inherent complexity makes it difficult for their
manufacturing processes to hold all of their
characteristics in control using SPC or by any other
means.

Common types of Test Systems

The ad hoc testing that is conducted during
the earliest stages of a development program is a
special case in which test equipment is generally not
considered a system but more of a collection of
independent items, brought together temporarily by
the design engineer to serve the purpose. Historically,
little automation has been used. This reinforces the
idea that ad hoc testing is not formal. Unfortunately,
it also can lead to the incorrect assumption that it is
not important as well.

DV testing is generally the first testing
conducted within a development program to benefit
from the construction and use of a formal test system.
The main advantage of the introduction of formality
is repeatability, ensuring consistent results that the
engineer can trust. In recent years DV systems have
come to be increasingly automated, in order to
improve throughput as well as to ensure repeatability.
PV testing is a manufacturing development process
intended to examine the variability of the produced
parts, and not necessarily the robustness of the basic
design. Although most are developed independently,
some PV tests systems are built directly upon the DV
testers that immediately precede them in the
development chain. Similar in construction to DV
testers, PV testers feature additional capabilities
necessary for tracking and comparing key
characteristic and unit-to-unit parametric
measurements statistically.

EOL test systems have many of the
characteristics of PV systems, and in many instances
are actually the PV systems themselves. The
difference is primarily one of the perceptions. PV is
the predominant term for production lines run by
SPC, while EOL generally applies for lines run with
100% inspection of all parts produced.

The construction of dedicated automated test
systems for use in ad hoc testing has generally been
considered too expensive for widespread application.
As with DV, PV and EOL testers, ad hoc testers are
generally very expensive because of the custom

requirements of the test suite. However it is also true
that these requirements are sometimes less custom
than in the test systems found further downstream.
Next, over the years several attempts have been made
at the design and marketing of generic automated test
tools for ad hoc testing use, some better suited than
others for this type of work.

Simulator Architecture and Design

The simulator was designed in a modular fashion
to meet the above requirements. This modularity
provides the user with several advantages.
• The user can configure the simulator to match

the needs of the application under test. If
additional resources are needed the user only has
to add an additional I/O module.

• In the event that a module malfunctions the user
can resolve the issue by replacing only the
module that was affected, limiting down time.

• This modularity extends to the simulator’s
processor board, which is a standard PC, ATX
motherboard.

• The simulator is controlled by a model running
on a standard PC motherboard, which controls
the simulator via the Base module. The Base
Module is the communications hub that
distributes the model’s commands to all of the
other modules in the chassis.

I n addition to being the communications hub
for the simulator the Base module also performs
power moding for the system.

This guarantees consistency of the rising and
falling edges of the power-moded signals across all
modules. All modules are update in each frame of the
model and the changes are clocked in at the end of
the model’s frame.

Figure 7: ECU Architecture Design

[Adsul, 2(6): June, 2013] ISSN: 2277-9655

http: // www.ijesrt.com (C) International Journal of Engineering Sciences & Research Technology
[1405-1421]

The simulator GUI provides a
comprehensive, front-end for all simulator specific
functionality as well as all adjacent enabling
software: The simulators software, that runs on a
Windows based host PC, is the interface that is used
to view and control activity on the simulator. Using
this interface the user can configure the I/O, select
user defined display panels, assign I/O to the display
panels, run scripts, and monitor and control simulator
operation.
1. Configuring I/O - The user is able to configure

the hardware and software settings for each
module in the chassis via the GUI allowing each
user or application can have its own
configuration settings.

2. Display Panels - The panels used for monitoring
and controlling the operation of the simulator are
created using a commercially available graphical
programming language software package. Every
user can choose to design their own panels or
they can reuse existing panels that were created
for other applications. The software comes with
generic panels that the user can use to get started.

3. Assigning I/O - All of the I/O for each module is
presented to the user in a tree structure in the
GUI. The user is able to assign any of these I/O
to GUI control or display widgets on the panel
enabling them to create customized interfaces.
The user can then assign a name or alias to any
of these I/O. This allows the user to see names
that they will recognize and are common for like
applications assigned to widgets on the display
panel and in scripts.

4. Running Scripts - The GUI provides a control
dialog for the creation, editing, running, and
controlling of scripts. Scripts have the capability
to set or monitor any of the I/O that is available
on the simulator. Signals that have been aliased
by the user can be accessed using their alias
names. This means that the script references
signals by the same names that are used on the
display panels.

5. Monitor and Control - Once the simulator has
been configured the user can monitor and control
operation through the simulator GUI. In addition
to the display panel widgets the user can use
scripts, the Tactile Interface Module, or the API
to monitor and control simulator operation.=

To minimize software cost per-unit, the
simulator command and control station can utilize a
scalable software set. For licensing purposes this
software can be designated as either a development
node, or a runtime node, or possibly an intermediate
node. A development node would have the capability
to edit models (using an appropriate modeling tool
license), compile them, and create new GUI panels,

in addition to all run-time capabilities. A run-time
user would only have simulator configuration and
control capabilities, without any additional software
licensing costs. Under many deployment conditions,
the number of runtime users greatly exceeds the
number of development users.

I/O Configuration and Management

The simulator’s configuration management
process handles both the hardware and software
configuration information for the system. Each user
has the ability to create a configuration specific to
their needs. The hardware configuration ensures that
all of the modules needed for the applications are
present in the chassis and that the correct cables are
hooked up to each module. Due to the plug and play
operation the order of the modules in the chassis are
unimportant only their presence is important. These
are used to determine that the correct cable is
attached to the simulator and that the cable is hooked
up to the correct modules for the device under test.

Figure 8: I/O Management

The software configuration ensures that the
system has all of the files that are needed to boot the
system. This includes all of the display panels,
scripts, GUI configuration information and so on.
The user has the ability to pack all this information
into a single file for archive purposes or to send it to
another user for sharing purposes.

Interfacing the simulators I/O modules into
the chassis is a simple plug-and-play procedure. The
simulator GUI automatically detects the type of card
(if any) located in each I/O slot in the chassis during
initialization. Through the GUI, an engineer can
customize the signals range/scaling, voltage rails,
channel configuration etc.

[Adsul, 2(6): June, 2013] ISSN: 2277-9655

http: // www.ijesrt.com (C) International Journal of Engineering Sciences & Research Technology
[1405-1421]

ECU Modeling Technology
ECU Modeling Concepts -

Before modeling, it is necessary to clearly
set out how the virtual development is to be applied.
First, in physical level design, it is important to
determine how to structure the microcomputer,
software, and peripheral LSI. Secondly, to validate
whether safety requirement for ECU is satisfied, the
following are required,
1. The optimized allocation of hardware and
software.
2. Estimating the CPU processing load for the
software to be installed.
3. Performing failure simulations.

Requirement 1 exists because of the need to
devise a structure that satisfies the system
requirements before the hardware or software even
exists. Requirement 2 exists because of the need to
have the software to be installed as well as a highly
accurate CPU model. Requirement 3 exists because
of the need for a way to inject failures and to perform
simulations on the system as a whole. Though the
models that would be used to meet requirements 1 to
3 all need different levels of abstraction(1), we
believe that it is possible to come close to connecting
these models with differing levels of abstraction in
what is practically a single virtual environment.

Creating models of the interaction between
ECUs, as well as the overall activity of the various
sensors, control units (ECUs), and actuators being
controlled will allow us to review the software and
hardware structure and to calculate the CPU
processing. Because the objective of the modeling is
not only to recreate the overall behavior but to also
have the notion of time, System C was used in all of
the hardware models.

Figure 9: Process Flow of ECU Development.

Modeling Components -

Based on the existing system structure, we
modeled each functional block including the AD
converters in the ICs as well as the microcomputer
peripherals such as the drive circuits and digital
filters. This allows not only the overall activity to be
observed but also the detailed behavior of each block.
The microcomputer manufacturer provided the model
of the microcomputer core, and this model was
connected to the other models. The model of the
microcomputer core is a cycle-accurate ISS model.
By doing so, Requirement 1 (layout and review of
hardware and software) and Requirement 2
(calculating the CPU processing load) are satisfied.

However, because having everything at a
detailed level of abstraction results in the
disadvantage of increased simulation time, the
behavior in the models is investigated making
strategic use (2) of transaction level and pin level
interfaces between models to adjust the abstraction
based on whether or not a block is under detailed
review. This allows the total number of runtime
events in the simulation to be decreased in order to
create an environment in which large scale systems
can be run at high speeds.

Figure 10: Interconnecting ECUs with Peripherals.

[Adsul, 2(6): June, 2013] ISSN: 2277-9655

http: // www.ijesrt.com (C) International Journal of Engineering Sciences & Research Technology
[1405-1421]

Figure 11: Pin-level and Transaction-level Interface.

When it considers how to model 32-bit

communication line, transaction level interface is for
verifying overall operation, and pin level interface is
for verifying communication method. These are
different abstractions. The degree of abstraction is
frame-based for the first type and bit-based for the
second type, and the simulation process has a single
event for the first type and 32 events for the second
type.

The disadvantage for the first type that bit
errors during transmission cannot be simulated, and
for the second is that the simulation takes too long. It
was for these reasons that we developed a modeling
method that maintained the advantages of both and
resolved their disadvantages. The method is to add a
switching event between transaction level and pin
level modeling so as to enable dynamic switching.
This reduced the overall simulation time, while still
allowing performing detailed verifications.

Devising Failure Models -

Up until now, the modeling of functions has
been discussed. However, there are advantages to a
virtual development environment when designing
safety into the system and when there is the need to
ensure the completeness of fail safes for different
types of failures. The operation of the entire system
can be verified before manufacturing, and even after
manufacturing, failures can be injected with accurate
timing in the desired location without physically
dismantling the system, resulting in the improved
ability to control and observe failures.

To inject these failures, the failure modes
were first analyzed. The results of this analysis
revealed that failures can occur in various locations
including physical connections and gates inside ICs,
but all of these failures can be classified into a few
modes such as disconnection and locking. Another

issue is the location to inject these failures and how
to inject these failures. Because the locations were
failures can be observed in an actual machine are at
its various terminals, a failure model was laid over
the functional model as shown in Fig. 6, and the
failures were defined in the output (a GND short
failure is shown), which forces the system to treat the
data transferred as abnormal values; this simplifies
the failure model and makes failure injection easier,
all without making any changes to the functional
model.

The final issue is the timing of the failure.
The failure model added above was given a failure
changeover signal as an input with the value and time
of occurrence set in the initial settings;

Figure 12: Failure model.

because such failures can be analyzed in the same
way as a regular simulation, it is easy to express not
only steady-state failures but also transient failures,
and we were able to use this method to verify design
safety.

ECU’S Development: Functionality and Diagnosis

For the ECU development should be
considered the communication system that it will be
used in the electronic architecture of the vehicle. In
this way, the new ECU's should be based on common
platforms to perform the data communication and the
interface with another ECU's. A reference if this
concept is the OSEK system (Open systems and their
interfaces for electronics in the vehicle).

Many well-known European vehicle
manufacturers and suppliers have joined up forming
an international consortium under the name ‘OSEK’,
which aims to introduce extensive standardization of
software components. This mainly involves
administrative mechanisms that create an
environment for the actual application software to run
in. These administrative functions fulfill practically
identical tasks that are fundamental and consequently
valid for all systems.

[Adsul, 2(6): June, 2013] ISSN: 2277-9655

http: // www.ijesrt.com (C) International Journal of Engineering Sciences & Research Technology
[1405-1421]

Figure 13: ECU Functionality

Figure 14: ECU Configuration

This operating system is a real-time multi-

tasking operating system that is specially adapted to
the conditions in motor vehicles. Particular emphasis
is placed on the low memory and computing time
required.

The OSEK communications unit governs the
data exchange within a control unit and between
different control units, regardless of the organization
of the data bus system used. The network
management sets the application bus system in
operation, and permanently monitors all control units
in the network.

The implementation of OSEK offers the
following advantages when compared to the

traditional development methods for control unit
software,
• Improves quality: standardizing the basic software
leads to higher quality, as modules that we have
already been tested are used.
• Easier maintenance: the high level of modularity
makes software maintenance easier.
• Re-usability: already tried-and-tested modules can
be stored in libraries and used again.
• Easier to integrate: application modules, which are
developed by different companies, can be linked
together or available modules integrated into a new
project more simply.
• Inter-changeable: modules form different
companies with identical functions can be inter-
changed.

Developing the Diagnosis Software

After the electronic and electrical
architecture of the vehicle are defined by the
development area, the after sales department starts
the development of the diagnosis software (DAS)
which will be used by the workshop network to fix
the problems in the electronic systems built in the
vehicle and also adapt them to the customer needs.

Figure 15: ECU in different work environment

The diagnosis software (DAS) is based on

decision trees that provides a complete test and work
procedure. Installation points and detailed wiring
diagrams can be viewed during each procedure.

Realizing the Communication – It is
necessary to be sure that it is possible realize the
communication between DAS and the ECU.

To transmit the data from the ECU, the data
from CAL layer has to be interpreted correctly.
Creating single source files ensures it. The author has

[Adsul, 2(6): June, 2013] ISSN: 2277-9655

http: // www.ijesrt.com (C) International Journal of Engineering Sciences & Research Technology
[1405-1421]

the possibility to create it manually or through a
specific application.

Creating single source documents – Single
source documents are SGML documents “called” in
decision trees (i.e. decision trees make reference to
them) containing the following information:
• ECU parameters
• Fault codes
• Environment data
• Coding fragments

This application to create single source documents is
available for all the authors via Intranet.

Figure 16: Communication Configuration window

Self Diagnosis Software

The ECUs are programmed with self-
diagnosis software (on-board diagnosis), which
allows management of the faults arising in the plant
to be controlled (i.e. engine, transmission, etc.). In
addition, the ECU passes the descriptive and
standardized diagnosis trouble code (DTC) of the
detected faults to diagnostic communication software
via K-line or via CAN bus. Fault detection and the
DTC management are specified by the European On
Board Diagnosis (EOBD) standards in Europe and
the California Air Resources Board (CARB, OBD II)
in the US. These rules have been included and
extended in the self-diagnosis specification (SDS).

DTC with the Basic OBD Structure
• Drive into specified operating point
• Activate electrical\logical\model fault
• Read out ECU diagnostic memory
• Evaluate test by comparing the detected fault

with the expected fault

• Generate report automatically has been improved
to include the EOBD test concepts.

Dynamic Software Verification

The focus of the simulation techniques
covered to this point has treated the ECU as a black
box – namely monitoring the I/O signals entering and
exiting the ECU.
It is also often beneficial to monitor the state of
measurement and calibration variables within the
ECU during a simulation.
This provides the system with enhanced capabilities
to perform validation, configuration control,
calibration, and performance analysis including the
following items.

• Setting an ECU input and checking the state
in ECU memory

• Monitoring diagnostics and fault codes
• Uploading learn tables
• �Adjusting calibrations
• Checking ECU software IDs for

configuration control

Testing ECU Networks
Conventional Test Methods

Before the first vehicles prototypes are
available, tests on ECUs (hardware and software) and
other electrical components are performed on static
benches that comprise the networked ECUs, the
actual wiring harness and some of the sensors and
actuators, i.e., the dashboard, the electrical motors of
the seats, the control switches, etc.

These benches are normally used to test
electrical actuators, simple sensors, and wiring
harness, and to perform functional tests on the car
body electronics and the self-diagnosis software. The
network management, gateway functionality and
CAN physical level are also tested. In order to
perform these tests, breakout boxes are added to
introduce electrical faults, power supplies are used to
generate ground shift presence and some tools for
CAN network and diagnostic lines analyses are used.

During vehicle development, the individual
components are gradually replaced by prototypes that
have previously undergone thorough testing. Tests
are performed manually, so they are not fully
reproducible and automatic test report generation is
not possible.

The user’s requirements for the test system
are described below. They are fairly representative of
other test systems for networked ECUs:
• All pertinent ECU power drivers and signal

outputs must be read in by the test system. It
must be possible to capture the signals and store
them in files if required.

[Adsul, 2(6): June, 2013] ISSN: 2277-9655

http: // www.ijesrt.com (C) International Journal of Engineering Sciences & Research Technology
[1405-1421]

• The test system must be able to stimulate all the
ECU inputs.

• Real electrical fault insertion capability is
required on ECU outputs in order to verify how
the system reacts to the insertion of known
faults. For ECU inputs, electrical faults can often
be stimulated by software.

• The test system must be able to log all CAN
messages between the ECUs. To investigate the
behavior of the CAN network, the test system
must be able to perform the following tasks,
1. Manage standard and extended identifier
messages.
2. Trace and record on all of the CAN lines
simultaneously with time stamps.
3. Send predefined messages interactively.
4. Generate triggers on start of frame for detailed
analysis.

Figure 17: Data Communication with ECU.

5. Measure the time elapsed between a certain
message with identifier “x” and a message with
identifier “y”.
6. Simulate the messages received and
transmitted by nonexistent nodes and react to
external triggers (events) or to events on CAN
lines.
7. Suppress all CAN messages sent by one or
more ECU.
8. Modify specific signals inside CAN messages
and if necessary calculate a new checksum.
9. Generate hardware errors on the CAN bus
(e.g., by inserting additional capacitors or
resistors between the CAN lines, generating error
frames, destroying CAN messages at arbitrary
bit positions).

• It must be possible to verify network
management functionality: sleep mode, alive
mode, and wake up mode.

• A diagnostic serial line is available on many of
the ECUs constituting the test system. During
test execution, it is necessary to interface the
ECUs through this line to request diagnostic
services and get diagnostic responses from the
ECUs. In this particular case, the ability to
interface to the ISO9141 serial line is required.

• Diagnostic communication protocols must be
implemented based on this layer.

• From the ECU’s point of view, the test system
must behave like a real car. This requires real
time capable models of all controlled systems,
especially for the engine, transmission, vehicle
dynamics and some of the body/comfort
components.

• For manual interactive operation of the system,
the experiment software must be powerful and
flexible, but also easy to handle. The ability to
automate the overall test system is crucial. For
such a large system particularly, it is necessary to
have powerful automation software with a well
structured automation concept.

Components of the Typical Test System

Testing in its most basic terms consists of
exercising the functionality of the device under test,
conforming the conditions that are applied,
measuring the resulting state of the ECU, comparing
the results to a previous generated list of acceptable
outcomes, and repeating this process for all functions.

Figure 18: ECU interface

Thus a key part of the process is the

application of representative inputs, and the
presentation of representative outputs, to the ECU in
order to place it in a controlled state that accurately
depicts the real-world conditions it will encounter in

[Adsul, 2(6): June, 2013] ISSN: 2277-9655

http: // www.ijesrt.com (C) International Journal of Engineering Sciences & Research Technology
[1405-1421]

use. Test engineers usually refer to these inputs and
outputs generically as ‘loads’, and their
consideration, design and construction is a key part of
developing any test system.

It is often tempting to use real sensors and
actuators as loads. Following the line of thought that
results in the acceptance of this logic, then it is
logical to assume that test systems are simple to build
and inherently accurate because they use real parts.
However, in spite of being ‘real’, such parts can only
substitute for one of a range of possible acceptable
parts that could be used for the purpose. This is
because all parts exhibit some variability. To be cost
effective, ECU based systems are designed to
accommodate this variability. In order to test most
comprehensively this entire range must be traversed
so as to ensure that all components in it, especially
the ECU, can accommodate the variability.

A more accurate, and recent, method for
presenting a representative environment to an ECU
under test involves synthesizing, or simulating, the
characteristics of all loads wherever possible.
Simulated loads have more flexibility and test the
device under test more thoroughly be4cause they can
be programmed to simulate a part whose
characteristics fall anywhere in the range of
variability the system is designed to accommodate.
The added flexibility that results is accompanied by
substantial additional complexity setup and control.
For this reason these loads are almost set up and
controlled by a computer.

For this reason, along with several others, all
modern test systems feature substantial computer
controlled operation. Computers in testing are used to
command loads to a particular configuration and also
to command test instruments to conduct
measurements. They are also ideal, however, for
recording and analyzing the results, and particularly
for having all of the above correctly with carefully
controlled timing when called for.

Most importantly, while humans can
generally accomplish all of these same tasks,
computers have excelled at conducting them
repeatedly, time after time, test after test, part after
part. This consistency has become critical to the
process of finding problems quickly and easily when
parts fail a test, hence saving valuable time and
money.

The last key part of a typical test system is
the mechanism used to handle the connection of
loads, measurement devices and power to the device
under test. When an engineer sets up and runs an ad
hoc test, all electrical connections required to conduct
the specific test are usually made by hand, set up and
broken down function by function as the test suite is
run through its sequence. When a computer runs an

identical test it needs a method for handling the
electrical interconnects automatically, since it does
not have hands with which to make and break
connections.

In modern test systems this task is usually
assigned to an electro-mechanical mechanism called
a switch matrix. Switch matrices allow fixed and
costly loads and measurements assets to be
selectively connected, broken down and reconnected
to the I/O pins of the device under test by computer
control. The term matrix has been applied because
the mechanism consists of an array of switching
relays, each of which can be activated independently,
or with others in concert, to establish the electrical
path between the test equipment and the device under
test. The matrix, under command of the computer
running the test, is responsible for setting up and
breaking down every connection needed during the
execution of the test suite.

When comparing computer-controlled
testing to that conducted by a human, the fact that the
computer requires a switch matrix is the only
nontrivial difference. While computers themselves
are generally inexpensive and ubiquitous, giving
them ’hands’ in the form of switch matrices amounts
to additional cost. Historically this cost has generally
been accepted because the speed and consistency
advantages provided by computer control usually
outweigh the cost of the matrix.

Test Automation

Test automation via scripting is essential if
ECU testing is to keep up with developer’s needs.
This task involves developing iterative, incremental
test cases that can exercise an ECU through limitless
test scenarios, and implementing those test cases in
the supported scripting language.
To guarantee real-time performance, the system
allows test automation scripts to be downloaded and
run directly on the real-time processor in the
simulators chassis. Through this mechanism, outputs
from a running simulation can be channeled to data
files for post processing.

Test Requirements

The previous items concerning the DTC
have been formalized in a flowchart that describes
the steps to be performed. The steps have to be
performed for each DTC (i.e., P0201), for each fault
symptom (e.g., short to GND, short to battery) and
for each test condition (detection rules), e.g., power-
on, cranking, engine run and vehicle run.

When a DTC, a fault symptom and a detection
rule have been defined, a generic test could be
performed as follows,

[Adsul, 2(6): June, 2013] ISSN: 2277-9655

http: // www.ijesrt.com (C) International Journal of Engineering Sciences & Research Technology
[1405-1421]

• Fault insertion with the correct fault
symptom

• Check
• Fault off
• Check
• Fault insertion with different fault symptom
• Check
• Fault off
• Check.

Closed Loop Simulation

The simulators software suite contains a pre-
compiled open-loop model, which can be
reconfigured via parameters through the GUI. This
open-loop model is essentially a signal-mapping tool,
allowing the engineer to easily assign any physical
signal to any virtual (or physical via the TIM) control
or display.

Through the enabling software tools that are
part of the simulators development suite it is possible
to add a plant model to the simulation, and interface
this plant with the physical I/O. This model
integration is accomplished using Simulink, and the
simulators software automates the compilation of the
edited model into a real-time executable model.
Using the simulator software provides an optimal
path for test engineers to migrate from open loop
testing to closed-loop testing on the same bench as
testing needs continue to grow in complexity.

Figure 19: ECU – Closed Loop Simulation.

Another capability of the simulator software

technology is distributed simulation. If the I/O count
were to exceed the size of one chassis, their software
automates the process of running the same simulation
in parallel across two chassis. Similarly, if the
compiled Simulink model were to grow in
complexity to the point it could not be run at the
desired step size, the model could be split into two
smaller models and run on 2 processors in parallel.

Figure 20: Closed Loop Simulation Process.

Through this software the simulator has the

flexibility to scale itself to both increasing model
complexity and I/O count easily and with minimal
cost. Since all targets use the same real-time
operating system (QNX), it is easy to interface the
simulator with other simulation nodes in other form
factors to further minimize costs.

Impact of In-Vehicle Networking

Control networks, Messaging and Signal
transport – Automotive networks generally are of the
command-and-control type. Unlike home or business
local area networking (LAN), or location-to-location
wide area networking (WAN), they are not typically
used to carry large data files, e-mail messages, or
internet content within the vehicle. Instead, they
handle small data transfers called ‘messages’, which
are typically used to convey commands from one
place in the vehicle to another or to retrieve
measurements taken by ECUs or sensors. They have
evolved out of a concept called multiplex wiring,
which is the basic technique for using a single set of
wires to carry multiple signals.

The initial goal of multiplex wiring was the
practical elimination of wires, interconnects, and
harnesses through their replacement, where possible,
by a vehicle data bus. This action altered the process
of exchanging data between ECUs, between sensors
and ECUs, or between ECUs and actuators. As a
result, data exchange no longer consists of activating
output pins and sending out digital or analog signals,
but has evolved into a process of constructing
messages containing representations of those signals
and sending them out over the new vehicle network
or data bus instead. However, as with networking
elsewhere, substitution of a network for discrete
wiring brings much more than cost savings on wiring.
The data channel provided by the network supports
many more opportunities for feature expansion,
functional efficiency improvement, and systems cost
savings than immediately meet the eye.

[Adsul, 2(6): June, 2013] ISSN: 2277-9655

http: // www.ijesrt.com (C) International Journal of Engineering Sciences & Research Technology
[1405-1421]

Figure 21: ECU Diagnostic and Calibration

Control networks are beginning to make a

significant impact on the electrical systems of most
vehicles. With the expansion of in-vehicle
networking a major shift in the topology of the
typical electrical system is underway, one that will
have a profound impact on the test process, and
ultimately shape the cost and complexity of testing.
Distributed I/O & Distributed functionality –

The concept of in-vehicle networking has
evolved substantially since multiplex wiring was first
introduced. However, it has generally followed a path
that has emphasized a controlled and deliberate
rollout of practical applications rather than an
unchecked explosion of theoretical capabilities.
Sending signals over the bus eliminates dedicated I/O
in a dramatic way as wires formerly dedicated to
carrying them in traditional fashion are removed in
favor of using the shared data bus. The bus has the
effect of becoming a common pathway between
devices, essentially allowing the small number of I/O
dedicated to it to be reused over and over again.

The next major step was the introduction of
the concept of distributed I/O. after implementing the
first multiplex wiring systems engineers determined
quickly that vehicle data buses could facilitate, at the
system level, much more than simple
communications between ECUs and components.
They discovered that it has possible to use data buses
to fundamentally alter the topology of the vehicle’s
electrical system, placing inputs physically near the
sensors and input devices they connect to, and
outputs adjacent to the actuators and output devices
they drive.

The process of generating electrical systems
with distributed I/O in this fashion is typically called
geographical partitioning. I/O is moved from a
centralized controller to a location in the vehicle
much closer to the loads being queried or driven.

This action has the effect of dramatically reducing
wire harness length and makes the most sense
currently in body and chassis control systems where
functionality is exercised frequently across large
areas of the vehicle.

At this point in time, given the introduction
of more sophisticated data buses in vehicles, the
concept is transitioning into the last major step in its
evolution, distributed functionality. It expands the
concepts behind distributed I/O by partitioning
functionality as well as I/O geographically. This step
involves widespread streamlining of existing vehicle
functionality and the addition of new features and
functions by splitting up the responsibility for these
functions between ECUs.

Figure 22: ECU Synchronisation

Taken to its extreme, this process facilitates
the long-sought concept of smart sensors and smart
actuators. Both feature traditional sensors and/or
actuators fitted with at least some measure of
functional control. Rather than placing this control in
a separate ECU, smart devices split it up among
themselves, reducing system complexity through the
elimination of centralized ECUs. Distributed I/O is
critical to accommodating the increasing numbers of
I/O required to support the newest feature being
added to vehicles, hence the concept of reducing test
cost and complexity due to I/O expansion.
Distributed complexity is critical to reducing ECU
complexity, leading to the reduction of test
complexity and the elimination of non-value added
costs resulting from what is essentially over testing.
Reduction of cost complexity and cost:

Since the costs are a significant percentage
of the cost of developing and producing electrical
systems, the reduction in test-costs that occurs from
transition to distributed systems is worth considering
in detail. The key to reducing test costs in
increasingly complex systems is to exploit the ability
of the distribution process to make each of the
testable components in the system simpler.

Simpler systems are easier to test because
they have fewer characteristics to monitor. While the
total number of characteristics for a given system will

[Adsul, 2(6): June, 2013] ISSN: 2277-9655

http: // www.ijesrt.com (C) International Journal of Engineering Sciences & Research Technology
[1405-1421]

not change substantially in the transition from fully
centralized to full distributed, there will be significant
reassignment from ECUs to smart components, and
from discrete I/O to signals embedded in messages
sent across the network. This phenomenon will result
in a reduction of testing complexity and cost overall
for two reasons,

1. Cost of testing to support quality –
The inherent complexity of most ECUs, especially
those with high I/O counts, makes it difficult if not
impossible to successfully implement SPC in their
production processes. This leaves costly 100%
inspection as the only means of guaranteeing quality
in those processes. By eliminating complex ECUs the
simpler components that remain become excellent
candidates for SPC and its inherent cost savings,
because there are fewer key characteristics to monitor
for each one.

2. Core Cost of Automated Testing –
Systems that use an In-Vehicle Network extensively
has fewer traditional I/O, in many cases dramatically
fewer. These systems are much less costly to test than
those interfacing via many individual wires, because
of the opportunity to use smaller, less costly switch
matrices instead of larger, more expensive ones. The
cost of switch matrices quadruples (approximately)
for each input added, because each new input must be
switched across all outputs, not just one
corresponding new one. Additional costs not related
to testing are also saved, for instance the cost of the
complex I/O drivers inside ECUs used to handle the
interface to individual wires, but these are outside the
realm of testing.

Conclusion

Here, we believe that maximizing the
performance of ECUs in electronic systems, which
continue to grow in scale and complexity, and
ensuring that these systems meet design safety
requirements will require methods to visualize things
that are difficult to visualize, and that this
visualization is needed both before and after
manufacturing. We would like to use the modeling
technology described in this paper as a base for
creating a virtual development environment and to
carry out the development of vehicle electronic
systems and products that contribute to society.

The simulation process provides the
capabilities to replace the static simulator used for
automotive ECU development and provides the
advanced features desired by development
community.

Many new ways of developing and testing
ECUs and their functionality are discussed. These
will provide a reduction in test execution time,

reliability of tests due to repeatability of internal and
external conditions. This will also provide the ability
to perform more exhaustive tests by modifying the
test conditions.

Also all the information related to diagnosis
is available on the same software, which results in
decreased run-time and other search efforts. This also
results in decreased vehicle a downtime and service
time that increases customer satisfaction.

Reduction in the cost of testing with
increased distribution can be resulted in the necessary
change which is helpful in many other ways to work
with these distributed systems, along with the test
benefits.

References

[1] Keyword Protocol 2000 (Implementation of
Diagnostic Services - Recommended
Practice - Version 1.1 - 31.01.1997).

[2] Ralf Pfaff - Diagnosis via CAN BUS On-
board / Offboard - Version 1.13;

[3] Ralf Pfaff - Diagnosis on K-line (On-board /
Offboard) - Version 1.1

[4] Luciano Breve Abrahão et al - Navigation
Systems in Brazil - Needs and Requirements
for Implementation - SIMEA 99;

[5] STARC: TL Modeling Guide, Second
edition, Japan, Semiconductor Technology
Academic Research Center, 2008, p.277.

[6] Köhl, S., Lemp, D., Plöger, M. , “Hardware-
in-the-Loop Simulation” pp.948-955,ATZ ,
Wiesbaden, Germany, October 2003.

[7] Di Mare, G., Ferrara, F., Scala, S., Sepe, E.,
“Hardware In the Loop testing of EOBD
strategies”, Proc. of the 15th IFAC World
Congress, Barcelona, Spain, July 2002

[8] Caraceni, A.,De Cristofaro, F.,Di Lieto N.,
Ferrara, F., “Gasoline Rapid Control
Prototyping System” 16v. Proc. of the
AVEC ‘02 Congress, Hiroshima, Japan,
September 2002

[9] Caraceni, A.,De Cristofaro F.,Ferrara, F.;
Philipp, O.; Scala, S., ”Benefits of using a
realtime engine model during engine ECU
development”, Proc. of the SAE World
Congress, Detroit, USA, March 2003

[10] Gruber, J, “ Steering Wheel Angle Sensor
for Vehicle Dynamics Control Systems”,
Proc. f the SAE World Congress, Detroit,
USA, February 1997.

